Neural Network Model for the Risk Prediction in Cold Chain Logistics

نویسندگان

  • Weiyang Xu
  • Zhenji Zhang
  • Daqing Gong
  • Xiaolan Guan
چکیده

This study investigates environment sensitive and perishable products (ESPPs) logistics problem, which is called cold chain logistics problem (CCLs). Based on a comprehensive literature review, we found that there is much room to improve regarding of the risks management in cold chain logistics, that is, the development of a comprehensive cold chain logistics design methodology should considered uncertainty sources and risk exposures. In this study, we propose a neural network model to illustrate the problems. Firstly, the paper develops input indicators at different points in cold chain logistics to examine the effects of environment fluctuations including temperature control, humidity monitoring, the temperature interruption time and electric vehicle mapping, etc; secondly, the improved neural network algorithm can achieve model convergence, including the increase of momentum term, the adjustment of learning rate and the change of error function. At last, through simulation, this study shows that comprehensive risk prediction of cold chain logistics will be calculated based on the input indicators using the improved neural network algorithm, and the predictive value is accurate. So not only the analyzing of kinds of cold chain logistics indicators can be realized through the Neural Network model, but we can take priorities resorting to the predictive results accordingly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complex Design of the Integrated Forward-Reverse Logistics Network under Uncertainty

Design of a logistics network in proper way provides a proper platform for efficient and effective supply chain management. This paper studies a multi-period, multi echelon and multi-product integrated forward-reverse logistics network under uncertainty. First, an efficient complex mixed-integer linear programming (MILP) model by considering some real-world assumptions is developed for the inte...

متن کامل

Research on the Performance Evaluation Method for Cold Chain Logistics of Agriculture Products Based on BP Neural Network Mode

Based on BP neural network model, this paper aims at evaluating the performance of cold chain logistics of agriculture products. This paper analyses on the basis of the fresh business' current situation of cold chain logistics, sums up the bottleneck of China's cold chain logistics of agriculture products operation, provides competitive and practical fresh electric cold chain distribution mode ...

متن کامل

Considering chain to chain competition in forward and reverse logistics of a dynamic and integrated supply chain network design problem

In this paper, a bi-objective model is presented for dynamic and integrated network design of a new entrant competitive closed-loop supply chain. To consider dynamism and integration in the network design problem, multiple long-term periods are regarded during planning horizon, so that each long-term period includes several short-term periods. Furthermore, a chain to chain competition between t...

متن کامل

Developing a Mixed Integer Quadratic Programing Model with Integer Numbers for Designing a Dynamic closed-loop Logistics Network

Logistics Network Design includes network configuration decisions having long-standing influences on other tactical and operational decisions. Recently, regarding environmental issues and customer awareness and global warming closed-loop supply chain network design is taken into consideration. The proposed network for the integrated forward and reverse logistics is developed by formulating a cy...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014